Boundedness of solutions for semilinear duffing equations

نویسنده

  • Xiaojing Yang
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundedness for Semilinear Duffing Equations at Resonance

In this paper, we prove the boundedness of all solutions for the equation x + n 2 x + φ(x) + g (x)q(t) = 0, where n ∈ N, q(t) = q(t + 2π), φ(x) and g(x) are bounded.

متن کامل

$L^p$-existence of mild solutions of fractional differential equations in Banach space

We study the existence of mild solutions for semilinear fractional differential equations with nonlocal initial conditions in $L^p([0,1],E)$, where $E$ is a separable Banach space. The main ingredients used in the proof of our results are measure of noncompactness, Darbo and Schauder fixed point theorems. Finally, an application is proved to illustrate the results of this work. 

متن کامل

Periodic Solutions of Damped Duffing-type Equations with Singularity

We consider a second order equation of Duffing type. By applying Mawhin’s continuation theorem and a relationship between the periodic and the Dirichlet boundary value problems for second order ordinary differential equations, we prove that the given equation has at least one positive periodic solution when the singular forces exhibits certain some strong force condition near the origin and wit...

متن کامل

Regularity of Minimizers of Semilinear Elliptic Problems up to Dimension Four

Abstract. We consider the class of semi-stable solutions to semilinear equations −∆u = f(u) in a bounded smooth domain Ω of R (with Ω convex in some results). This class includes all local minimizers, minimal, and extremal solutions. In dimensions n ≤ 4, we establish an priori L∞ bound which holds for every semi-stable solution and every nonlinearity f . This estimate leads to the boundedness o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 132  شماره 

صفحات  -

تاریخ انتشار 2002